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ABSTRACT 

A n  Eisens te in  measu re  on the  symplect ic  group over rat ional  n u m b e r  field 

is cons t ruc ted  which interpolates  p-adically the  Fourier expans ion  of Siegel-  

E isens te in  series. T h e  proof  is based on explicit compu ta t i on  of the  Fourier 

expans ions  by Siegel, Sh imura  and  Feit. As an  appl icat ion of this  result  a 

p-adic family of  Siegel modula r  forms is given which interpolates  K l ingen -  

Eisens te in  series of  degree two us ing Boecherer ' s  integral  representa t ion  for 

the  Kl ingen-Eisens te in  series in t e rms  of the  Siegel-Eisenstein series. 

Introduct ion  

Let G be a reductive group over a number field F,  and p be a prime number. 

The arithmetic of L-functions attached to automorphic forms on G, in particular 

the study of their special values, is closely related to the theory of Eisenstein 

series via Rankin's method [Ranl, Ran2]. This method uses Eisenstein series 

in an integral representation for certain rather general complex automorphic L- 

functions [PSh-R]. In order to construct p-adic automorphic L-functions out of 

their complex special values one can successfully use p-adic integration along the 

(two-variable) Eisenstein measure which was introduced by N. Katz [Kal, Ka2, 

Ka3] and used by H. Hida [Hil, Hi2, Hi3] in the case of G = GL2 over a totally 

real field F (i.e. for the elliptic modular forms and Hilbert modular forms, see 

also [Pall, [Pa3]). The application of such a measure to a given p-adic family of 

modular forms provides a general construction of p-adic L-functions of several 

variables. On the other hand, the evaluation of this measure at certain points 

gives another important source of p-adic L-functions [Ka3]. 
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The purpose of this paper is to construct a (many-variable) p-adic measure 

coming from the Siegel-Eisenstein series on the symplectic group 

G = GSp,~ = {(~ • GL2m I t~J,~ c~ = v(~)Jm, v(c 0 • GL1} 

over Q where 
(0., - lm) 

J m =  1,~ 0,~ " 

We use p-adie interpolation of the q-expansions of these series; they were studied 
by Shimura [ShDu] and Feit [Fe] and have the form 

E(z; k, X, N) = ~ x(det (a~)) det (cz + d) -k, 
oePnr \ r  

where z is a variable in the Siegel upper half plane of degree m, 

Y ) , ~ = { z • M m ( C ) [ t z = z = x + i y ,  y > 0 } ,  

(oo 
r = r r ( N ) ,  

ca da ' 

and P denotes the subgroup of P C Goo+, consisting of elements a with the 

condition ca = 0, and k is the weight (the above series converges absolutely 

for k > m + 1). As a result of our construction we obtain a p-adic measure of 
1 + m(m + 1)/2 variables which generalizes the Katz-Eisenstein measure. In the 
simplest situation the variables (x, ~) in this family belong to Z~ x A,~,v where 

Z~ is the p-adic unit group, and Am,p is a free Zv-module of rank m(m + 1)/2 
formed by half integral symmetric matrices of size m over Z v. The integration of 

~k,x = det (~)k-'~xk-(m/2)X(X), (x,~) • Z~ X A,~.v) 

against this measure yields the Siegel-Eisenstein series of weight k with character 

X, where a = (m + 1)/2. Using the variable ~ we can also obtain a twist of the 

Siegel-Eisenstein series with arbitrary locally constant function of ~(~) (say with 

values in Q): this twist is a certain (classical) Siegel modular form. The use of an 

arbitrary p-adic continuous function ~(~) yields therefore a certain p-adic Siegel 

modular form (at least when ~(~) = ¢(det) ,  where ¢ is a Dirichlet character, 

noted by the referee). In our previous works ([Pa4], [Pa6], [Pa2], [Pa5]) we used a 

weaker construction of this type in order to build the non-Archimedean standard 

L-functions of Siegel modular forms for m even and for a sufficiently large weight 

of a fixed Siegel eigenform. Although these L-functions depend only on one 
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(cyclotomic) variable, the construction worked well both in the p-ordinary and 

in the "supersingular" cases. 

Let h = Zp[[X]] be the Iwasawa algebra. Our construction defines a family 

of A-adic modular forms whose special values are the Siegel-Eisenstein series. A 

general theory of A-adic forms was developed by H. Hida in the elliptic modular 

case; he then extended it to G = GL~. Recently a serious a t tempt  to extend 

this theory to the Siegel modular case was made by K. Buecker (Dissertation of 

Cambridge University, UK, 1994, under the direction of Prof. R. Taylor), and 

by J. Tilouine and E. Urban [Ti-U]. If the techniques of A-adic forms work for 

G = GSPm as well as for GL2, one can expect to obtain a much more general 

construction of non-Archimedean standard L-functions of several variables (at 

least in the p-ordinary case). Following an idea of A. Wiles, another interesting 

application of the Siegel-Eisenstein measure is related to an explicit construction 

of A-adic Siegel modular forms using multiplication of a given form f by a family 

Gk of (not necessarily holomorphic) Eisenstein series, then applying to it the 

holomorphic projection operator 7-lol of Section 2, and decomposing the result- 

ing family into a sum of A-eigenforms. On the other hand, for a homogeneous 

polynomial function P(~) e Z[~] one can attach a differential operator P(D) 
where D is the matrix whose entries are the derivations (1/2)(1 + 5i,j)O/Ozi,j, 
and z = (zi,j) is a variable symmetric matrix. A certain twist of P(D) produces a 

non-holomorphic differential operator Ap which sends automorphic forms to au- 

tomorphic forms and preserves the arithmeticity at CM-points [ShAJ]. Another 

characteristic feature is that  it maps a holomorphic Eisenstein series G to a non- 

holomorphic Eisenstein seies ApG. In Section 2 we describe a complex analytic 

family of the type 7-lol ( f  • ApG) which should correspond to a p-adic family 

coming from the product of P(~) by the Siegel-Eisenstein measure. We intend 

to describe in detail this p-adic family in another paper. It would be interesting 

to describe explicitly the algebra of p-adic differential operators acting on the 

spaces of p-adic Siegel modular forms and to understand its interrelation with 

the p-adic Hecke algebra keeping in mind that in the elliptic modular case for 

m = 1 the Ramanujan operator commutes with the action of the Hecke operators 

of the appropriate weight. 

It was pointed out by the referee that it would be interesting to study a possi- 

bility of evaluation of this Siegel-Eisenstein measure at CM points. This could be 

done only when the measure has values in the space of p-adic modular forms not 

just in the monoid ring R used in this paper. However, some additional analysis 

on this point would be necessaryand could be the subject of another paper. 
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CONTENT OF THE PAPER. In the first two sections we discuss rationality prop- 

erties of Fourier coefficients of the Siegel-Eisenstein series; here we give some 

known techniques of computing their Fourier expansions and the action of the 

holomorphic projection operator and the Maass differential operator on Fourier 

expansions of Siegel modular forms. In Section 3 we recall some basic facts from 

the theory of non-Archimedean integration including the S-adic Mazur measure 

and its Mellin transform. Most of this material can be found in [Pa4]. Main the- 

orems (Theorem 4.3 and 4.4) in the cases of even and odd degree m respectively 

are formulated and proven in Section 4. In Section 5, written in cooperation with 

Koji Kitagawa (Hokkaido University, Japan), we describe an application to the 

A-adic Klingen-Eisenstein series and we construct a p-adic measure coming from 

the Klingen-Eisenstein series on the symplectic group. 
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in the S~minaire de Th~orie des Nombres in Paris, and on February 18, 1998, in 

the Conference on "p-adic aspects of the theory of automorphic representations" 
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for the invitation to the Conference in Jerusalem and for their great hospitality. 

1. F o r m u l a s  for  Fou r i e r  coeff ic ients  o f  t h e  S i e g e l - E i s e n s t e i n  ser ies  

1.1 .  RATIONALITY PROPERTIES OF FOURIER COEFFICIENTS OF THE SIEGEL-- 

EISENSTEIN SERIES. We start by recalling the definition of these series. We call 

matrices c, d E Mm(Z) coprime iff 

{G E Mm(Q)IGc, Gd E Mm(Z)} = Mm(Z). 

A couple (c,d) is called a s y m m e t r i c  coup le  if ctd -= dtc. Two symmetric 

couples of coprime matrices are called equ iva len t  iff for some unimodular matrix 

U E GEm(Z) we have (cl, dl) = (Uc2, Ud2). 
Let A = A,~ denote the set of equivalence classes of symmetric couples of 

coprime matrices. Then the set can be identified with the set of right coset 

classes F ~ \ F  m of the group F m = Sp,~(Z) with respect to its parabolic subgroup 

via the map 

(1.1) 
(a b) 

F ~ \ F  '~ ~ r ~  d ~ class of (c, d) E A,~. 
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We see also that via this map the set 

{(c,d) • AmIc - 0(modN)} 

is identified with a coset for rr\rr(N). 
Now let k, N be positive integers, s a complex number and X a Dirichlet 

character modulo N such that X(-1)  = ( -1 )  k. For z • ~ the Siegel-Eisenstein 

series is defined by 

(1.2) E(z, s; k, X, N) = E(z, s) = det (y)S E x(det  (d)) det (cz + d) -k-12sl, 

where the summation is taken over all (c, d) • A with the condition c -- 0(mod 

N) and we use the convenient notation by Deligne and Ribet [De-R]: 

z_k_12sl d el z_klzl_2s for z • C*. 

The series (1.2) is absolutely convergent for k + 2 Re (s) > m + 1 and it admits 

a meromorphic analytic continuation over the whole complex s-plane. Put  

j (a,z)=det(cz+d) f o r a = ( :  : ) a n d z • 2 ) ,  

then it follows from the description of A m given above that 

(1.3) E(z, s; k , x , Y )  = det (y)~ E x(det (d~))j((~,z) -k-1281, 
~6PnF\F 

where 
(as b~ ) 

F--- F~(N) ,  c~ = 
ca d~ ' 

and P denotes the subgroup of P C G~+,  consisting of elements c~ with the 

condition c~ = 0. 

For the full symplectie modular group F = Spm(Z ) these series were defined 

by Siegel [Sie]. 

In the original definition by Siegel the number k is even and k > m +  1, so that  

the series (1.2) is absolutely convergent and is referred to as the Siegel-Eisenstein 

series. The rationality property of its Fourier coefficients was established by Siegel 

himself (although it was certainly known earlier in the case m = h 

2k EO)(z) = 1 - ~ ~rk_l(n)e(nz) 
r t ~  l 

(1.4) 
= l + ~'~ (2ak-l(n)'~ e(nz), 

¢(1-k)] ak-l(n) = E dk-1' 
din 
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where Bk are Bernoulli numbers, ~(s) being the Riemann zeta function). After 
Siegel's original work his calculation was generalized in various directions: to the 

case of congruence subgroups of F(0 m)(g) C F m [St], to non-convergent series 

defined by analytic continuation over an additional parameter (Hecke's method) 

[Fe], to other classes of algebraic groups and symmetric domains [B52], [Harl], 

[Fe], [ShDu], [Sh82]. It was discovered that the rationality property remains 

valid even ibr more general series of Eisenstein type (the K l i n g e n - E i s e n s t e i n  

series). 

In this paper we are interested in the Siegel-Eisenstein series defined by (1.2) 
for k + 2Re(s)  > m + 1 (we use again the notation z -k-12sl = z-k]z[ -2s for 

z, s E C, k E Z) and by analytic continuation over s for other values of s E C. 

It is assumed in the identity (1.2) that N > 1,X is a Dirichlet character mod N 
(not necessarily primitive, e.g. trivial modulo N > 1), and 

( c o  bo)  
= e r = c r 

Ca da 

In the following study of certain arithmetic properties of Fourier coefficients 

we use an explicit calculation of the Fourier expansion of the series 

(1.5) E*(z, s) = E ( - z  -1, s)(det z) -k, 

obtained from (1.2) by applying the involution 

(01 ) 
7 =  J'~ = lm 0 " 

However, for k > m + 1 and N -- 1 both series coincide and reduce to the series 

originally studied by Siegel: 

E(z)  = E (z) -- E(z ,  O) = E*(z,  0). 

The detailed study of these series was conducted by Shimura [ShDu] and P. Feit 

([Fe], §10) in a more general situation, in particular, for the case of Eisenstein 

series attached to the group Spin over a totally real field. For convenience we 

reproduce only a specialization of these results to the case of F -- Q. 

1.2. P R E P A R A T I O N :  THE C O N F L U E N T  H Y P E R G E O M E T R I C  FUNCTION.  F o r  a 

detailed description of the Fourier expansion of the series (1.5) we need some 

additional notation. Let 

(1.6) V = Vm = {h e Mm(R)lth -- h} 
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be the set of all real symmetric matrices of size m x m, and 

(1.7) r = v +  = {h e Vlh > 0} 

the subset of its positive definite elements. For each matrix T E Mm(R) let 

5+(T) denote the product of all positive eigenvalues of T, 5_(T) = 5 + ( - T )  and 

5+ (T) = 1 if T does not have positive eigenvalues. 

For h E V let p = p(h) denote the number of positive eigenvalues of h counted 

with their multiplicities, and q = q(h) the number of negative eigenvalues. Then 

r = r(h) = p + q is the rank of h. 

Let also 

(1.8) 
m - 1  

Fro(s) = 7r m(m-i)/4 H F(s - ( j /2))  
j=O 

be the F-function of degree m. This function generalizes the usual F-function in 

view of the following integral representation: 

(1.9) Fro(s) = f r ( d e t  y')Se-tr(y)dXy, 

which is valid for s E C with Re (s) > (m - 1)/2, and 

dy = 1 ]  dyij, dXy = det (y)-(m+i)/2dy. 
i<_j 

Recall that dXy is a measure on Y which is invariant with respect to the action 

of a E GLm(R) given by d×(taya) = dXy. For complex numbers (~ and /3 we 
define the numbers 

(1.10) t ~ = ( m + l ) / 2 ,  T=T(h,c~,/3) 

= (2p -- m)c~ + (2q -- m)~ + m + (m -- r)n + pq/2, 

(1.11) a = c ~ ( h , a , ~ ) = p a + q ~ + m - r + { ( m - r ) ( m - r - 1 ) - p q } / 2 .  

In [Sh82] Shimura studied the confluent hypergeometric function 

(1.12) w(y, h; ~, fl), 
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which is defined for all (y, h; a,/3) E Y × V × C 2 and which is holomorphic in 

variables (a,/3) E C 2. It can be used for computing the Fourier expansion of the 

series 

(1.13) S(z,L;a,  f l ) = E d e t ( z + a ) - ~ d e t ( ~ + a )  -~ (z E ~m), 
a E L  

which is obtained by summation over a lattice L c V and is absolutely convergent 

for Re (a +/3) > m. Let 

L ' =  {h E Yitr(hL) E Z} 

be the lattice dual to L with respect to the pairing given by 

(u, v) ~-~ em(uv) -- exp(27ri tr(uv)). 

In particular there is the equality 

(1.14) #(V/L)S(z; a,/3) = E ~(y, h; a,/3)em(hx) 
h E L  t 

in which 
f 

#(V/L) = ] dy 
Jv /L 

denotes the volume of a fundamental domain V/L, 
(1.15) 

~(y, h; a;/3) = i r ~ - ' ~ 2 ~ r ° r m - ~ ( a  +/3 - - 1  

× (get y)~-a-~5+(hy)a-~+q/45-(hy)~-~+q/4w(2~ry, h; ~,/3), 

and it is additionally assumed that Re (c~) > m/2, Re (/3) > m/2 (for the reg- 
ularity of F-functions in (1.15) see [Sh82], (4.34.K)) and we adopt the standard 

choice of branch for the exponentiation, namely, 

v ~ = e ~log(~), -~r _< Im (log v) < r .  

The function ~(y, h; a,/3) admits the following integral representation: for g E Y, 

h E V, (c~,/3) E C 2 

/3) = i v  em(-hx) det (x + iy) -~ det (x - iy)-~ dx, (1.16) ~(u, h; 

with the integral being absolutely convergent for Re (a +/3) > 2a - 1 (see [Sh82], 

(1.25)). 
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Applying the equality (1.14) to the lattice L = S = VNMm(Z) when L' -- A = 

Am is the lattice of all symmetric half integral matrices and also to the lattice 

L = NS ,  L' = N - X A m  with a = k, 3 = 0, k > m and Cm = Am n Y ,  we get the 

classical equality 

(1.17) det (z + a) -k  = (27ri)mkFm(k) -1 ~ (det h)k-~em(hz).  
a6S h6Cm 

Indeed, we notice that the only terms in equality (1.17) correspond to p = m, 

q = 0 because of the poles of the F-functions in the denominator of (1.15). 

Also, the function w(21ry, h; a,  fl) reduces to the exponent em(iyh) in view of the 

formulas 

(1.18) ~(y, h; 5, 0) = i-'~a2(1-~)m(27r)m~Fm(a)-l(det h)a-~em(iyh),  

(1.19) 0; 5 ,  3 )  = rm(  + 3 -- 
rm( )rm(3) ' 

(1.20) lim ~(y, h; ~ + s, s) -- i-'~2%'~r.~(~)-Xem(iyh), 
s--~0 

with q = 0 and 0 -- [(m +p) /2 ]  (see also [ShDu], (7.11)-(7.14)). 

The confluent hypergeometric function w(27ry, h; a, 3) can be used for analytic 

continuation of the Siegel-Eisenstein series [Fe], [ShDu] by means of the term- 

by-term analytic continuation of their Fourier coefficients. These coefficients can 

be expressed in terms of the functions (1.12) (see Theorem 1.6 below). We list 

also some other properties of these functions, which are useful for the analytic 

continuation (see [Sh82], theorem 4.2): 

functional equation 

(1.21) w(2~ry, h; a, fl) = w(21ry, h; ~ + (t/2) - fl, ~ + (t/2) - a),  

where t = m - r; 

a uniform upper bound on compact subsets 

(1.22) ]w(2ry, h; a, 3)[ _< Cle-T(hY)( 1 + #(hy)-C~), 

with a , 3  varying in a fixed compact subset T C C 2 and the constants C1, C2 

depending only on T, T(X) being the sum of eigenvalues of a matrix x, # the 

minimum of their absolute values. 
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1.3.  CRITICAL VALUES OF THE CONFLUENT HYPERGEOMETRIC FUNCTION. 

Now we give formulas, which express the function w(27ry, h; c~,l~) in terms of 

certain polynomials of the entries of the matrix y : (Yij) provided h > 0 and 

either ~ -  ~ e Z , ~ -  ~ >_ 0 or/3 E Z,/~ _< 0 (~; : (m + 1)/2). The pairs ((~,/~) 

satisfying these conditions will be called cri t ical :  as we shall see, the critical val- 

ues of s for the standard zeta function correspond to certain critical pairs. The 

following calculation of the special values is based on properties of the function 

~(z;(~,/~) defined for z • 2)' : {z E M,~(C)Iiz • g)} by the integral 

(1.23) ~(Z; 0/, ]~) = / y  e-- tr(zx) det (x + l m )  ~-~ det x~-~dx, 

which is absolutely convergent for Re > a -  1 and defines a holomorphic function 

of (z, a,/~). Let 

(1.24) w(z; a,/~) : Fm(/~) -1 det (z)t~¢(z; a, fl). 

It was established by Shimura ([Sh82], theorem 3.1) that the function (1.24) can 

be analytically continued to a holomorphic function over 2) ~ x C 2 satisfying the 

functional equation 

(1 .25)  ~ ( z ;  ~ - Z, ~ - ~ )  = ~ ( z ;  a ,  Z). 

For an arbitrary compact subset T C C 2 there exist positive constants A, B > 0 

depending only on T such that  

(1.26) Jw(z;~,D)[<_A(l+tL(y) -B) f o r y ~ Y C t S ' ,  ( ~ , ~ ) c T .  

It is known also (see [Sh82], (4.19)) that 

(1.27) w(y, lm; a,/~) = 2-'~(m+l)/2e - tr(y)w(2y; c~,/~) 

and that  for all a E SLm (R) one has 

(1.28) ~ ( ~ a - ~ y a - ~ ;  ~ , /~ )  = ~ ( y ;  ~ ,  ~ ) ,  

(1.29) w(y, -h; ~, ~) = w(y, h; 1~, a), 

(1.30) w(y, h; c~, I~) : 1. 
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Comparison of (1.27) and (1.28) shows that for h > 0 there is the identity 

(1.31) 

477 

w(y, h; a, 8) = w(a( hy ) a - l ,  lm; a, 8) 

-- 2-m(m+l)/2e - tr(y)w(2a(hl /2yhl/2)a-1;  a,  8).  

Now let us consider the differential operator A,~ (the M a a s s  d i f fe ren t ia l  
o p e r a t o r )  acting on C~-functions over V ® C of degree m, which is defined 

by the equality 

(1.32) Am ---- det (O~i) , O~j = 2-1(1 ÷ 5~j)O/Oz~j. 

For an integer n >_ 0 and a complex number 8 consider the polynomial 

(1.33) R(z;  n, 8) = ( - 1 )  mnetr(z) det (z)n+~A~[e - tr(z) det (z)-~], 

with z E V ® C, where the exponentiation is well-defined by 

det (y)f~ = exp(log(det (y))) for det (y) > 0, y e Y ® C. 

According to definition (1.33) the degree of the polynomial R(z;  n, 8) is equal to 
m n  and the term of the highest degree coincides with det z n. We have also that  
for fl E Q the polynomial R(z;  n, 8) has rational coefficients. 

PROPOSITION (See [Sh82], proposition 3.2): For any non-negative integer n the 
functions det (z )"w(z;  n + ,~, 8) and det (z)"w(z;  a,  - n )  are polynomial  functions 

of  z. More precisely, we have that  

(1.34) w(z; n + a, 8) = det (z)-nR(z; n, 8), 

(1.35) w(z; (~, - n )  = w(z; n + ~, n - c~) = det ( z ) - n R ( z ;  n, ~ - ~). 

Notice also that for m -- 1 one has 

(1.36) R l ( z , n ,  8) = ~ ( k ) 8 ( / ~ +  1 ) . . . ( 8 ÷  k - 1 ) z  n-k .  
k = 0  

In general Rm(z;  n, 8) can be expressed in terms of a polynomial with rational 

coefficients of At(z), the polynomial functions of entries of the matrix variable 

z E Mm(C) defined by 

m 

(1.37) det (tlm - X) = Z ( - 1 ) r A r ( X ) t  "*-r. 
r-----0 
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If we apply this to functions w(2~ry, h; a, fl) from (1.21) then we get for h > 0 
the following identity: 

w(2ry, h; n + ~, 1~) = w(2~ry, h; ~ - ~, n) 

(1.38) = 2-m(m+l)/2em(ihy)w(4~a-l(hy)a ;n + ~, ~) 

= 2-'~(m+l)/2em(ihy) det (4rhy)-'~R,~(4nhy;n, fl). 

1.4. PROPOSITION (Fourier expansion of the Siegel-Eisenstein series E*(z,s) ,  
see [Fe], §10): The series defined by (1.5) have the following Fourier expansion: 

(1.39) E ' ( z , s ) =  E b(h,y,s)em(hz), 
hEN 1Am 

in which coefficients have the form of the product 

(1.40) b(h, y, s) = Y - ' ~ W ( y ,  h, s)r(h,  s)RL*(h, x, k + 2s)M(h, X, k + 2s), 

with the factors described as follows ((a)-(d)): 
(a) The confluent hypergeometric function 

W(y, h, s) =i-mk2rr°w(2~y, h; k + s, s) 
(1.41) 

x (det y)~-k-8~+(hy)k+8-~+q/4g- (hy) 8-~+p/4, 

with (compare with (1.15)) 

~- = ( 2 p -  m)(k + s) + ( 2 q -  m)s + m + ( m -  r) + pq/2 

= 2(r - m)s + ( 2 p -  m)k + m +  ( m -  r)(m + 1)/2 +pq/2, 

= p ( k  + s )  + q s  + . ~  - r + { ( m  - r ) ( m  - r - 1)  - pq}/2 
= r s + p k +  ( ( m - r ) ( m - r -  1) -pq} /2 .  

(b) Gamma factor F(h, s). Let, for integer r, the symbol e(r) denote its parity: 
e(r) = O, 1 with r - e(r) mod 2. Put ~ = e(k),# = e((r/2) + q + k) and then 

define: 

for E(r) = 0, 

r (h ,  s) = 

rm-~ (k + 2 s -  ~-~-~2 1) F (s + _k~_) l-[[m/2] F( k l  u= 1 + 2 8 -  i) 

r,~_q(k + s)r~_,(s)r (s+ ~-~+~/~+.~.t(~-~)/~l_~ ) ~ .=~ r (k  + 2 s - m + i + ( r - 1 ) / 2 )  
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for e(r) = 1, 

r(h,  s) = 

2 ] 1 1i=1 

r~_~(k  + s )r~_~(s )  I][(Z -~-~)/~1 r(k + 2s - m + i + ~ / 2 )  

(c) The ratio of  Dirichlet L-functions RL*. Let, for a Dirichlet character X 

modulo N of parity 5 = 0 or 1, 

(1.42) L*N(S, X) ---- F((k + 5) /2)Lg(s ,  X) : F((k + (f)/2) 1-[ (1 - x(q)q-8) -1 
q XN 

denote the normalized Dirichlet L-function, which is regular for all s E C, s ~ 1, 

including s -- 0 (due to the condition N > 1). Next  we define an additional 

quadratic Dirichlet character Xh depending on h E Am and defined only for even 

r ~ O. Namely, for h = 0 let Xh = XO be trivial; for h ~ 0 we know that for some 

matrix  u E GLm(Q),  

(1.43) t u h u - -  ( ~  00) with det h l ~ 0 ;  

then let Xh denote the quadratic character attached to the quadratic field 

Q( dex/-d-~-l)/Q (this definition does not depend on the choice of  a matrix  u). 

Put  

(1.43a) 

Under this notation we set: 

for an even r (i.e. with c(r) = 0), 

RL* (h, X, k + 2s) = 

L * N ( k + 2 s - m  + (r/2),)~0r/2)~h) V]'[(m-r)/2]  n*N(2k + 4s - 2m + r - 1 + 2i, X 2) I 1i=1 

L ~ ( k  + 2s, ~() I-[l~=( 2] L~(2k  + 4s - 2i, )/2) 

for an odd r O.e. with ¢(r) = 1), 

RL*(h , ) i , k  + 2s) = 

1-I (m-r-I)/2] L*N(2k + 4s - 2m + r - 1 + 2i, )/2) i=1 
'28 ~ ]-I ' [m/2]/ .* [O/,, L*N(k+ , , w l u = l  "~Nt" '~+4s--2 i ,  x 2) 
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(d) The integral factor 

(1.44) M(h,  X, k + 2s) = H Mq(h,x(q)q -k-2È) 
qEP(h) 

is a finite Euler product, extended over primes q in the set P(h) of prime divisors 

of the number N and of all elementary divisors of the matrix h. The important 

property of the product is that for each q we have that Mq(h,t) E Z[t] is a 

polynomial with integral coefi~cients. 

The explicit form of this polynomial is insignificant for our purposes; however, 

one can find interesting explicit formulas for these coefficients in [Rag], [KiY]. 

1.5.  NORMALIZED SIEGEL-EISENSTEIN SERIES. We introduce here three types 

of normalized Siegel-Eisenstein series in order to give a precise statement on their 

holomorphy properties with respect to the variable s, the properties of positivity 

of matrices 4 by which their Fourier coefficients are indexed, and also algebraic 

properties of these Fourier coefficients: 

G*(z ,s)  = G * ( z , s ; k , ) t , N )  

= N'~(k+2~)/2i'~k2-'~(k+l)r-m(8+k)F(lm, S)-I  

(1.45) 
[m/2] 

x L*N(k + 2s, X) H L*N(2k + 4s - 2i, x 2 ) E ( - ( N z )  -1, s) det (v/-Nz) -k 
i=1 

Ira/2] 
= Nm(k+~")/2P(k, s)L~v(k + 2s, X) I I  LN(2k + 4s - 2i, ~2)E*(Nz, s), 

i=1 

with 

E*(Nz ,  s) = E ( - ( N z )  -1, s) det (Nz)  -k = N - k m / 2 E ] W ( N ) ,  

F( k, s) =i'~k2-m(k+l)Tr-m(s+k)F(lm, S) -1 
[m/2] 

(1.46) x F((k + 2s + 5)/2) H F(k + 2s - j )  
j = l  

/ rm(k + s) r ( s  + (k - ~ + ~) /2 ) ,  
=imk2-m(k+l)Tr -m(s+k) X if m is even; 

( rm(k + s), otherwise. 

If m is odd then we put G+(z,s)  = G - ( z , s )  = G*(z,s) .  If m is even then we 

define (with # = e((m/2) + k)) 

(1.47) G-(z , s )  = r((k + 2 s -  (m/2) + V)/2)-lG*(z,s),  
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(1 .48)  
i~Tr(1/2)-k-2s+(m/2)  

G+(z ,  8) 
- r ( ( 1  - k - 2s  + ( ~ / 2 )  + u)/2) a*(z' 

~) 

2 i , ' r (k  + 2s - (m/2) )  cos(~r(k + 2s - (m/2)  - # ) / 2 ) a _ ( z  ' 
S). 

= (2~r)k+2~_(,~/2) 

Note tha t  the normalizing factors in formulas (1.45), (1.47) and (1.48) are 

closely related to those of the Dirichlet L-series and the s tandard  zeta functions 

(for even m). 

For the normalized series G* (z, s) we have 

(1.49) G*(z , s )= E b*(h,y,s)em(hz), 
hEAm 

where 

b*(h, y, s) = W*(y, h, s) r*(h ,  s)L*g(h, X, k + 2s)M(h, X, k + 2s), 

with 

I'* (h, s) = r - ( l r , ,  s ) - l r - ( h ,  s), 

W* (y, h.s) =N'~(~+k-'~) imk2-m(k + l )Tr-m(~+k) em (--ihy) W ( Ny,  N - l  h, s) 

=imk2-m( k + U Tr-m( s+k ) em (-- ihy ) W (y , h, s). 

The  factor M(h, X, k + 2s) is given by (1.44), and for r even we have 

L*N(h, X, k + 2s) = 
[(m-r)/2] 

L;~(k  + 2s  - m + ( ~ / 2 ) , ) c 0 r / 2 x h )  I - [  L;v(2k  + 4s  - 2 ,~  + r - 1 + 2i ,  X2) 
i=1 

and Nr r odd 

L*N(h, X, k + 2s) = 
[( . . . .  1)/21 

H L*N(2k + 4 s -  2rn + r - 1 + 2i, x2). 
i=1 

1.6. THEOREM (on Fourier coefficients with positive matr ix  indices): 

(a) Suppose that N > 1 and let m be even, 2k > m. Then: I f  2s is an integer 

such that s < 0, k + 2s _> 1 + (m/2) ,  there is the following Fourier expansion: 

(1.50) G + ( z ' s ) =  E b+(h'y's)em(hz)'  
Am~h>O 
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where for s > (m + 2 - 2k)/4 in (1.50) non-zero terms only occur for positive 

definite h > O, and for all s from (a) with h > O, h E Am the following identity 

holds: 

b+(h, y, s) = W*(y, h, s)L+(k + 2s - (m/2), xOm/2Xh)M(h, X, k + 2s), 

where 
2iSr(s) cos(~r(s - 5)/2) Lg(s  ' X) 

L+(s ,x)  = (2~r)~ 

is the normalized Dirichlet L-function, 5 = 0 or 1 according to X(-1) = (-1)  ~, 

the factor M(h,  X, k + 2s) is defined by (1.44), Xh and 0 defined by (1.43) and 

(1.43a), 

W*(y, h, s) = 2 -m~ det h k+2s-~ det (47ry)~R(4~rhy; -s;  ~ - k - s), 

provided s is an integer, where R(y; n, ~) is defined by (1.33), and b+ ( h, y, s) = 0 

otherwise (if2s C Z but s ¢_ Z). 

(b) Let m be odd, 2k > m. Then: If  2s is an integer such that s <_ O, k + 2s >_ 

1 + (m/2), there is the following Fourier expansion: 

(1.51) G + ( z ' s ) =  E b+(h'y's)em(hz)'  
Am~h>O 

where for s > (m + 2 - 2k)/4 in (1.50) non-zero terms only occur for positive 

definite h > O, and for all s from (a) with h > O, h E Am the following identity 

holds: 

b+(h, y, s) = W*(y, h, s)M(h, X, k + 2s), 

where the factor M(h,  X, k + 2s) is defined by (1.44), 

W*(y,  h, s) = 2 -m~ det h k+2s-~ det (4~ry)SR(4nhy; -s;  ~ - k - s), 

provided s is an integer, where R(y; n, 8) is defined by (1.33), and b + ( h, y, s) = 0 

otherwise (if2s E Z but s ~ Z). 

The proof is deduced from the expansions (1.49) using the definition of the 

normalizing factors, see [Pa4], Ch. 2, Theorem 3.8. Note that by (1.41) 

W*(y, h, s) =e,~(-ihy)w(2ry,  h; k + s, s)(det y)~-k-~ 
(1.52) 

x 5+(hy)k+~-~+a/45_ (hy) ~-~+p/4, 

and then take into account formula (1.38) for the critical values of the function w. 

In the case of odd parity of 2s E Z the corresponding Fourier coefficients vanish 

by properties of the F-factors in (1.47), (1.48). 
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2. H o l o m o r p h i c  p r o j e c t i o n  o p e r a t o r  a n d  t h e  Ma a s s  

o p e r a t o r  

483 

d i f f e ren t i a l  

2.1. HOLOMORPHIC PROJECTION OPERATOR. Recall that a function 

F: 2)m -+ C, F E C~())m) 

is called a COO-modular f o r m  of weight k on the group F~(N)  with a Dirichlet 

character ¢ rood N if 

F((az+b)(cz+d)-l)=¢(det d)det(cz÷d)kF(z) V~E (ac b) EF~n(N). 

The complex vector space of functions F with the above condition will be denoted 

by A~k(N, ¢).  For all F E JOkm(N , ¢) there is the following Fourier expansion: 

(2.1) F ( z ) =  ~ A(y,h)em(hx), 
hEAm 

where A(y, h) are some C~-functions on Y. The Petersson inner product is 

defined for an arbitrary holomorphic cusp form f E Skin(N, ¢) and F E A:4~(N, ¢) 

by 

(f, F)N = ] f(z)F(z) det yk-m-ldxdy, 
o(N) 

where (I)0(N) ---- F ~ ( N ) \ ~ m  is a fundamental domain for the group F~(N) .  

We call a function F E A:4~(N, ¢) a f u n c t i o n  o f  b o u n d e d  g r o w t h  if for 

each e > 0 the following integral converges: 

/ X / Y  tF(z)ldet Yk-l-me-~tr(V)dydx < oo (2.2) 

where 
X = {x E Mm(R)itx = x, ]xij] _~ 1/2 for all i,j}, 
Y = {y E Mm(R)i~y = y > 0}. 

Respectively, we call a function F E 2 ~ k ( N , ¢ )  a f u n c t i o n  o f  a m o d e r a t e  

g r o w t h  if for all z E f) and for all sufficiently large values of Re (s) >> 0 the 

integral 

(2.3) /~ F(w)det (~  - z) -k-12sl det Im(w)k+Sd×w 

is absolutely convergent and admits an analytic continuation over s to the point 

s = 0. The last definition may differ from a traditional one; its meaning is 
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(2.4) 

with 

clarified by the following result (Theorem 2.2), which provides a refinement of 
theorem 1 of Sturm's paper [St]. It will follow from the proof that all functions 
of bounded growth automatically turn out to be of moderate growth in the sense 
of definitions (2.2), (2.3) given above. 

2.2. THEOREM: Let F E JOkm(N,¢ ) and k > 2m. Put for h > O, h E Am 

a(h) = c(k, m) -1 det (4h) k-(m+i)/2 f A(y, h)em(ihy) det yk- l -m dy, 
JY 

c(t, m) = rm(t - (m + 1)/2)~r -mct-('~+l)/~), 

and A (y, h) being coefficients of the expansion (2.1); and suppose that the integral 
(2.4) is absolutely convergent. Define the function 

7toIF(z)= E a(h)em(hz). 
Am gh >O 

Then 
(a) if the function F 
Skin(N, ¢);  

E J O k ( N , ¢ )  is of bounded growth then 7-lolF(z) E 

(b) if the function F E J~4k (N, ¢) is of moderate growth and the expansion (2.1) 
contains only terms with positive definite matrices h E Am, then 7tol F(z) E 

In both cases for all g E $~(N,  ¢) the following equality holds: 

(2.6) (g, F)N = <g, 7tol F)N 

(see [Pa4], theorem 4.2). 

Remark: The cusp form 7-lol F is uniquely determined by (2.6) under the as- 
sumptions of (a), but in (b) this equality is not sufficient to identify the modular 
form 7-lol F. For example, (2.6) does not change if we replace this modular form 

by adding to it an Eisenstein series (of Siegel or of Klingen type). Part  (a) of 
Theorem 2.2 was established by Sturm [St]. 

We now describe a special complex analytic family of the type 7-lol (g. G) which 
should correspond in the case of Siegel-Eisenstein series G = Gk to a certain p- 

adic family coming from the Siegel-Eisenstein measure. We intend to describe 

in detail this p-adic family in another paper. 
For the construction we shall use formulas (2.4) in a special situation described 

in the next theorem. We intend to apply Theorem 2.3 below in another paper in 
order to construct some explicit p-adic families of Siegel cusp forms. 
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2.3. THEOREM: Suppose the C~°-modular form F E 2Q~(N, ~) has the form of 
a product of the type F(z) = g(z)G(z), where 

g ( z ) =  E B(h)em(hz), 
A., ~ h > 0  

G(z) -- E C(h) det (4~ry)-"R(47rhy;n, fl)em(hz), 
Am 9h>O 

F(z) satisfies one of the two assumptions (a) or (b) of Theorem 2.2 and R(z; n, i )  
is the polynomial defined for any integor n > 0, fl C C and z = tz E M,~(C) by 

R(z; n, l )  = (-1) mnetr(z) det (z)~'+f~A,~[e-tr(z) det (z)-Z], 

where 
Am = det (0/j) (Oij = 2 -1 (1 + 5ij)O/Ozij, i <_ j) 

is the Maass differential operator. Then the following equality holds: 

(2.7) 7tol F(z) = E B(h~)C(h2)P(h2, h; n, i)em(hz), 
Am ~h=hl  +h2 >0 

where P(v, u) = P(v, u; nil) denotes a polynomial of u = tu -- (uij) and v = tv = 
(vii) with the property 

P(v, u; n, l )  -- get v'~(mod(uij}) 

and P(v, u; n, ~) e Q[u, v] for any ~ e Q. 

The proof of Theorem 2.3 is carried out by a straightforward application of the 

integral formula (2.4) for the action of 7tol on each of the Fourier coefficients of 

the function F(z): 

A(y, h) = E B(h~)C(h2) Get (47ry)-nR(4rrh2y; n, i)em(ihz). 
AmDh=hlTh2>O 

As a result we get 

A(h) = E B(hl)C(h2)P(h2, h; n, ~), 
Am ~h-~h l"l-h2 >O 

where 

P(v, u) -- P(v, u; n, ~) 

det (47ru) k- (m+l) /e /y  
= ~mm~--~m--+l--~) R(4~rvy; n, ~) det (4~ry) -'~ det yk-('~+l)/2em(2iuy)dXy 

det (4~u) k-(m+W2 
= ~mm~---(m-~l----)~) / y  R(4rvy; n, i )  det (4ry)-'~+k-(m+W2em(2iuy)dXy 

det (4~ru) k-(m+l)/2 / y  
= ~mm(-'k---~--+l--~)) R(vy;n'~)det(y)-n+k-(m+l)/2e-truydxy 

= r m ( k  - n - ( m  + 1 ) / 2 )  get uk-(m+W2R(v • O/Ou; n, t ) [de t  u(m+l)/2-k+'~], 
Fm(k - (m + 1)/2) 
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with n • Z, n >__ 0, ~ • C. One can show by differentiation that the function 

P(v,  u) = P(v,  u; n,/~) is a polynomial in u, v with the desired properties. 

3. D i s t r i b u t i o n s ,  m e a s u r e s  and  n o n - A r c h i m e d e a n  integration 

3.1. DISTRIBUTIONS. Let us consider a commutative associative ring R, an 

R-module ,4 and a profinite (i.e. compact and totally disconnected) topological 

space Y. Then Y is a projective limit of finite sets: 

(3.1) Y=li_mY~ (~r~j:Y~-+Yj, i, j e I, i >_j) 
i E !  

where I is a (partially ordered) inductive set and for i >__ j, i , j  C I there are 

surjective homomorphisms ~ri,j: Yi --~ Yj with the condition ~ri,j o 7rj,k = ~ri,k for 

i > j >_ k. Let Step(Y, R) be the R-module consisting of all R-valued locally 

constant functions ¢: Y --+ R. 

Definition: A distribution on Y with values in a R-module ,4  is a R-linear 

homomorphism 

(3.2) #: Step(Y, R) ~ A. 

For ~ E Step(Y, R) we use the notation 

Each distribution # can be defined by a system of functions #(0: y~ -+ ,4, satis- 

fying the following finite-additivity condition: 

(3 .3 )  = (y  • x • 

A criterion that  a system of functions #(0: Yi ~ ,4 satisfies the finite-additivity 

condition (3.3) (and hence is associated to some distribution) is given by the 

following condition (compatibility criterion): for all j • I,  and ~oj: Yj --+ R the 

value of the sums 

/~(~) = #( i ) (~)  = ~ ~i(y)#(0(y) is independent of i 

(3.4) ~,eY~ 

for all large enough i _> j. 
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Example: The Bernoulli distributions (see [La]). Let M be a positive integer, 

f :  Z -+ C is a periodic function with period M (i.e. f(x + M) = f (x ) ,  f :  Z/MZ 
-+ C). The generalized Bernoulli number Bk,f is defined by 

(3.5) ~ T Bk'l tk = E -~-~t f(a)teat 
k=O a : 0  

Now let us consider the profinite ring 

Y =  Zs= lim_ Z/MZ (S(M) c S), 
M 

the projective limit being taken over the set of all positive integers M with 

support S(M) in a fixed finite set S of prime numbers. A periodic function 

f: Z/MZ --+ C with S(M) C S can be regarded as an element of Step(Y, C) and 

there exists a distribution Ek: Step(Y, C) --+ C such that 

(3.6) Ek(f) = Bkj  for all f E Step(Y,C). 

For a function f :  Z/MZ -+ C as above let 

then 

(3.7) 

o o  

L(s, f) = E f(n)n-S; 
n = l  

L ( 1 - k , f ) -  Bk,f 
k 

This implies independence of Bk,l on the choice of M. We note also that 

if K C C is an arbitrary subfield, and f(Y) C K, then Bk,f E K; hence the 

distribution Ek is a K-valued distribution on Y. 

3.2. MEASURES. Let R be a topological ring, and C(Y,R) be the topological 

module of all R-valued functions on a profinite set Y. 

De~nition: A measure on Y with values in the topological R-module .4 is a 

continuous homomorphism of R-modules 

~: ¢(Y, R) ~ A. 

The restriction of # to the R-submodule Step(Y, R) c C(Y, R) defines a distri- 

bution which we denote by the same letter #, and the measure # is uniquely 
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determined by the corresponding distribution since the R-submodule Step(Y, R) 

is dense in C(Y, R). 

Now we consider any closed subring R of the Tate field Cp, R C Cp, and let 

.4 be a complete R-module with topology given by a norm I" I-a on A compatible 

with the norm ]. [p on Cp. Then the fact that a distribution (a system of 

functions #(0: y~ -+ A) gives rise to a A-valued measure on Y is equivalent to 

the condition that the system #(0 is bounded, i.e. for some constant B > 0 and 

for all i E I,  x E Y~ the following uniform estimate holds: 

(3.8) I#(i)(x)lA < B. 

3.3. PROPOSITION (The abstract Kummer congruences (see [Ka3], p. 258)): Let  

{f/} be a system of continuous functions fi E C(Y, Op) in the ring C(Y, Op) of all 
continuous functions on the compact totally disconnected group Y with values 

in the ring of integers Op of Cp such that the Cp-linear span of {f i}  is dense in 

C(Y, Cp). Let also {ai} be any system of elements ai E 0 v. Then the existence 

of an Or-valued measure It on Y with the property 

f y  f i dIt = a~ 

is equivalent to the following congruences: for an arbitrary choice of elements 

bi E CB a/most all of which vanish, 

(3.9) ~ bJ , (y )  E p'~O v for all y E Y implies ~ b,a, E pnO v. 
i i 

THE S-ADIC MAZUR MEASURE. Let c > 1 be a positive integer coprime 3.4. 

to 

Mo=l-Iq 
qES 

with S being a fixed set of prime numbers. Using the criterion 3.3 we show that 

the Q-valued distribution defined by the formula 

(3.10) E~(f )  = Ek( f )  - ckEk(fc), fc(x) = f (cx) ,  

turns out to be a measure where Ek( f )  are defined by (3.6), f E Step(Y, Q) and 

the field Q is regarded as a subfield of Cp. 

Let us consider next for a complex number s E C the distribution It~ on 

Gs -- Z~ which is uniquely determined by the following condition: 

(3.11) #c(X ) ---- (1 - x-l(c)cS-1)LMo(S, X), 
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where LMo (s, X) denotes the Dirichlet L-function with Euler factors at primes 

dividing M0 removed from its Euler product. Moreover, 

k 

is a Op-measure, and #(o c) ()ix;) = #C(X). The corresponding measure/tic) = #(0 c) 

is the S-ad ic  M a z u r  measu re .  

3.5.  NON-ARCHIMEDEAN INTEGRATION. Let S be a finite set of primes con- 

taining p. Consider the following Cp-analytic Lie group 

Z × "t'S = Homcontin( s, Cp ), 

where Gals -~ Z~ = 1-[qeS Zq is the Galois group of the maximal abelian ex- 

tension of Q unramified outside S and infinity; Cp = Qp is the Tate field (com- 

pletion of an algebraic closure of the p-adic field Qp). Now we recall the notion 

of a p-adic measure on Gals and properties of its Mellin transform. This Mellin 

transform is a certain p-adic analytic function on the Cp-analytic Lie group Xs . 
The canonical Cp-analytic structure on A's is obtained by shifts from the obvious 

Cp-analytic structure on the subgroup 

Homcontin(Z)~, C ; ) C  XS. 

We regard the elements of finite order X E fl:,tors as Dirichlet characters whose 

conductor c(x) may contain only primes in S, by means of the decomposition, 

X: A ~ / Q  × class field)theory Gals ~ ~ x  ~ )  C× ' 

where i~  is the fixed embedding. The characters X c X t°rs  form a discrete 

subgroup A 't°rs C Xs.  We shall need also the following natural homomorphism: 

xp: G a l s - + Z ~ - + C p ,  Xp e XS, 

k. yk. so that all integers k E Z can be regarded as characters of the type Xp. y ~-~ 
Recall that a p-adic measure on Gals is a bounded Cp-linear form # on the 

space C(Gals) of all continuous Cp-valued functions 

--+ #(~) = fG ~d# C Cp, ~ E C(Gals), 
&ls 
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and it is uniquely determined by its restriction to the subspace C 1 (Gals) of locally 

constant functions. We denote by #(a + (Q)) the value of # on the characteristic 

function of the set 

a +  (Q) = {x • Gals  [ x ~- a mod Q} c Ga l s .  

The Mellin transform L~ of # is a bounded analytic function 

Xs -~ Cp, L~(x) = f xd# E Cp, X E Xs, L~: 
J G  &Is 

on Xs, which is uniquely determined by its values L~(X) for the characters X • 
,~S tOrs. 

The function 

(3.12) L(x) = (1 - c-lx(c)-l)-lLz(~)(x) (x e As) 

is well-defined and it is holomorphic on Xs with the exception of a simple pole 

at the point x = Xp E Xs. This function is called the non-Archimedean zeta- 
function of gubota-Leopoldt (see [Ku-Le], [Iw]). 

Let w mod A be a fixed primitive Dirichlet character such that  (A, Mo) = 1 

with M0 = 1-]qes q" Put  S = S O S(A), M = l-Iqe-~ q" Then for any positive 

integer c with (c ,M) = 1, c > 1 there exist Cp-measures #+(c,w),#-(c,w) on 

Z~ which are uniquely determined by the following conditions: for s E Z, s > 0 

C s _ 

(1-XW(C)C-S) ~ - ~ )  I I  { (1 -  Xw(q)qS-1)/(1-xw(q)q-S)}L+o(s"Xw)' 
q e S \ S ( x )  

where sol  ) denotes the support of the conductor of X, and for s C Z, s < 0 

(3.14) ~p 1 s 

where 

(3.15) 
2i r(s) c o s ( . ( s  - a ) / 2 )  

L +  ° ( s ,  = , 

(3.16) LMo (s, ~w) = L-~(s, ~w) 
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are the normalized Dirichlet L-functions with 5 = 0, 1, ( -1 )  ~ = Xw(-1).  The 

functions (3.13) and (3.14) satisfy the following functional equation: 

LMo (1 -- S, X~) -- C,~S G(w~) H {(1 - x~(q)q~-l)/(1 - ~w(q)q-~)}L+o(s,~w), 
qes\s(x) 

which is equivalent to the standard 

L-functions with a primitive character. 

By definition of pc 

functional equation of the Dirichlet 

where x • As, and Xs is regarded as a subgroup of 2d~. 

4. p-adic  m e a s u r e s  de f ined  by  t h e  Four i e r  coeff ic ients  o f  t h e  S i ege l -  

E i s e n s t e i n  ser ies  

4.1. A p-ADIC CONSTRUCTION. Now let S be a set of prime numbers containing 

a fixed prime number p, Am,s = Am®Zs be a free Zs-module of rank m(m+l)/2 
of half integral symmetric matrices of size m over Zs. We construct certain p-adic 

measures on the compact group Y = Am,s x Z~, with values in the completed 

semi-group ring R -- Op[[qBm]] ® Q of the multiplicative semi-group qBm, where 

Bm is the additive group of positive semi-definite half integral matrices ( = 

(~q) > O, 2(ij • Z, ~ii • Z, Op being the ring of integers of the Tate field 

Cp. This measure will be characterized by its integrals on the discrete subset 

Zs C C(Y, Cp) formed by elements of the type ((k, X), ¢) for sufficiently large 

k • Z, Dirichlet characters X: Z~ -+ C~, and additive characters ¢ of Am,s. 
We use the following simple observation: if for a fixed element 

C(q) = E • ® Q 
~6Bm 

and for an open compact subset U C Am,s we put 

(4.1) G(q;U) = Z g~q~ • Op[[qBm]] ® Q' 
~6BmNU 

then we obtain a measure #a  on Am,s defined by #G(U) = G(q; U). 
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4 . 2 .  COEFFICIENTS OF THE NORMALISED EISENSTEIN SERIES AS S-ADIC 

INTEGRALS.  Consider again the normalized Eisenstein series G+(z,s) = 
G+(z ,  s; k, X, M) ,  of Theorem 1.6. Recall that :  

For 2s to be an integer, s < 0, k + 2s _> 1 + (m/2) ,  M > 1, we have 

G + ( z ' s ; k ' x ' M ) =  E b+(h,y,s)em(hz), 
Am Dh:>0 

where for s > (m + 2 - 2k) /4  non-zero te rms only occur for posit ive definite 

h > 0, and for all s as above and for h > 0, h C Am the following identi ty holds: 

(4.2) 

b+(h, y, s) = I W*(y, h, s)L+(k + 2s - (m/2) ,  xw)M(h, X, k + 2s) for m even, 

[ W* (y, h, s)M(h, X, k + 2s) for m odd, 

where w = om/2Xh , 

L+( s, X) = 2iSF(s) cos(n(s - 5) /2)LM(S,  X) 
(2 )s 

is the normalized Dirichlet L-function, 5 = 0 or 1 according to X ( - 1 )  = ( - 1 )  s, 

the factor  M(h, X, k + 2s) defined by (1.44), namely  

(4.3) M(h, X, k + 2s) = H Mq(h,x(q)q-k-2s), 
qEP(h) 

is a finite Euler product ,  extended over primes q in the set P(h) of pr ime divisors 

of M and of all e lementary  divisors of h, where Mq(h,t) E Z[t] is a cer tain 

po lynomia l  with integral coefficients; Xh and 0 are defined by (1.43) and (1.43a), 

W*(y, h, s) = 2 -m~ det h k+2s-~ det (4~y)SR(4nhy; - s ;  t~ - k - s), 

provided s is an integer, and the polynomial  R(y; n, fl) is defined by (1.33), and 

otherwise b+(h, y, s) = 0 (i.e. if 2s E Z but  s • Z). 

Under  the above assumpt ion  on k we put  s = 0; then according to formulas of 

Section 2, R(4~hy; -s; n - k - s )  = R(4nhy; 0; n - k )  = 1 and the series G+(z, s) = 

G+(z ,  s; k, X, M)  are holomorphic Siegel modular  forms with cyclotomic Fourier 

coefficients: 

Am~h>O 
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with 

b+(h;k ,x)  = I 2 - m ~ d e t ( h ) k - ~ L + ( k  - ( m / 2 ) , x w ) M ( h , x , k )  for m even, 

( 2 -m~ det (h)k-~M(h,  X, k) for m odd. 

For the S-adic construct ion put  

(4.4) G + ( z ; k ' x ' M )  = E b+(h;k'X)em(hz)" 
A m ~ h > O  

(de t  h , M o ) = l  

On the other  hand, we have seen in (3.13) tha t  the corresponding values 

of L + ( k -  (m/2),Xom/2Xh) can be represented as certain p-adic (or S-adic) 

integrals. Pu t  in (3.13) s = k - (m/2) ,  X = X, and w = O~/2Xh; then we have 
(4.5) 

r~k-(m/2) 
(1 - XW(C)e -k+(m/2)) ~ x  

a( x) 

x H { ( 1 - x w ( q ) q k - ( m / 2 ) - l ) / ( 1 - X c ° ( q ) q - k * ( m / 2 ) ) } L + ( k - ( m / 2 ) , X  w) 
q~S\s(x) 

4.3. THEOREM: Let  m be even, and suppose that 2 • S . Let c > 1 be a 

positive integer coprime to Mo = YIqE S q. Then there exists a measure #~)-s on 

Y = {(~, x) • Am,s x Z~ } with values in R = Op[[qB'~]] ® Q which is uniquely 
defined by the following properties: for all pairs (k, X) with k • Z sufficiently 

large, 2k > m, and a Dirichlet character X : Z~ ~ C~, x mod M with M 
divisible by Mo, one has: 
(a) 

(4.6) 

y d e t  x) = (~)k-~ xk-(ml2)x(x)d#~)_ S(~ , 

Cxk-(m/2) 
(1 - ~(c)2c -2k+m) a (~)  

x I I  {(1 - x 2 ( q ) q 2 k - m - I ) / ( 1 - ~ 2 ( q ) q - 2 k + m ) } G + ( z ; k , ~ , M )  • R. 
qcS\S(x) 

(b) Consider the natural projection 7rs: Y -4 Am,s. For a fixed pair (k, X) as 
~., ~#(c) , ,xk-(m/2)  . . . .  above let sk E-S) (  P X)(~) denote the measure on Am,s obtained as the 
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direct image of #(E)-S defined by integrating along the fibers of 7r the function 

x~-(m/2))l(x) on Z~. Then the measure 

k- ,~  • (~) k - ( . ~ / 2 )  det (~) 7TS(I~E_s)(Xp X)(~) 

on Am,s coincides with the measure #cs+.c(k,~) corresponding by (4.1) to the 

function 

G+'~(z; k, ~) = (1 - ~(c)2c -2k+'~) Cxk-(m/2) 

x 1-I {(1 --x2(q)q2k-m-1)/(1 ~(q)2q-2k+m)}G+(z;k,~,M) • R. 
q~S\S(x) 

In other words, for all locally constant functions qo = ~o(~), ~ • Step(A.~,s, Q) 

one has 

(4.7) v~(~)  det (~)k-~x~-('~/2)X(x)dp~)_s(~, x) 

= Z ' 
A,~ 9 h  >O 

where b +'C ( h; k, ~) are the corresponding Fourier coefficients of the function 

= 

A m ~ h ~ O  

as above. 

Remark: The reason of the condition 2 c S is that we have to omit the Fourier 

coefficients containing a nontrivial 2-factor in the finite Euler product (4.3) as we 

use the work of Shimura [ShDu] and Feit [Fe] who never computed the 2-factor 

of the Whittaker integral. However, it was pointed out by the referee that for 

GSp(4) the computation at the prime 2 was carried out by Kaufhold in 1959 

[Kauf] so that  the condition 2 E S could be removed in this case. 

4.4. THEOREM: Let m be odd, and suppose that 2 E S. Then there exists a 

measure #E-S on Y = {(~,x) • Am,s x Z~} with values in R = Op[[qB'~]] ® Q 

which is uniquely defined by the following properties: for all pairs (k, X) with 

k • Z sufficiently large, 2k > m, and a Dirichlet character X : Z] -+ C~, 

X mod M with M divisible by Mo, one has: 
(a) 

(4.8) f det (~)k-~x~-('~/2)X(x)dpE-S(~, x) = C+(z; k, ~, M) • R, 
J Y  
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(b) Consider the natural projection rs: Y -+ Am,s. For a fixed pair (k, X) as 

above let lr~(#E_S)(Xk-(m/2)X)(~) denote the measure on Am,s obtained as the 

direct image of # ~ - s  defined by integrating along the fibers of ~r the function 

Xkp-(m/2)X(x ) on Z~. Then the measure 

k-~Tr* det (~) S(lAF,--s)(Xkp--(rn/2))~)(~) 

on Am,s coinsides with the measure #a+(k,~) corresponding by (4.1) to the 

function 

G+(z; k,X) = G+(z ;k ,~ ,M)  • R. 

In other words, for all locally constant functions ~ = ~(~), ~ • Step(Am,s, Q) 

one has 

(4.9) y~(~)  det (~)k-~Xkp-(m/2)X(x)d#E_Z(~ , X) 

= 

Am~h>O 

where b + (h; k, ~) are the corresponding Fourier coefficients of the function 

: 

Am~h>O 

as above. 

Remark: Again, the reason for the condition 2 E S is that  we have to omit the 

Fourier coefficients containing a nontrivial 2-factor in the finite Euler product 

(4.3) as we use the work of Shimura [ShDu] and Feit [Fe] who never computed 

the 2-factor of the Whittaker integral. However, for GSp(6) it seems that  the 

computation at the prime 2 has been carried out by Katsurada [Kats] so that 

the condition 2 C S could probably be removed in this case. 

4.5. Proof of Theorems 4.3 and 4.4: We use arguments analogous to those in 

[Pa4], pp. 115-116. It is easier to prove Theorem 4.4, in which case the measure 

#E-S  is uniquely defined by (4.9) because the functions of the type 

~(~) det (~)k-~xk-(m/2)X(x) 

on Y are dense in C(Y, C,) .  Notice that the right-hand side of (4.9) contains 

the finite Euler product M ( h , ~ , k )  = rIqeP(h)Mq(h,~(q)q-k), and it has the 

form of a finite linear combination of terms of the type ~(b)b -k -- (x(b)bk) -1 
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with (b,p) -- 1 whose coefficients are integers independent  of X and k. So one 

obviously constructs  #E-S t e rm by term. The  equality (4.8) then follows from 

the equali ty (4.9). 

In order to prove Theorem 4.3 we use the integral representat ion (4.5), which 

easily t ransforms to the following: 

(4.10) 

(1 - X2(c) c-2k+m) ~ - {  .~ (-~/2) 

qcs\s(x) 

= I-I {( l+Xw(q)qk-<m/2,-x)l(l+Xw(q)q-k+<m/2))} 
qeSkS(x) 

In order to establish (4.10) we replaced X by X and used the identi ty 

(4.11) (1 - xw(q)x)(1 + xw(q)x) = (1 - x2(q)x2). 

Recall tha t  in (4.10) we use the nota t ion w for the primitive Dirichlet character  

such tha t  if det h = a2t with a square free integer t, then we have tha t  Xu = Xt 
where Xt is the primitive Dirichlet character  associated with the quadrat ic  field 

Q(v~) ,  (t, S) = 1. 

Now we take into account tha t  for w = 0"~/2X~ 

(4.12) 
= 

Note also tha t  

(4.13) 
/ 

= / 
Or )" \ 

We define # ~ ) s  by (4.7); for this purpose we subst i tute  (4.10) into the definition 
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of the numbers 

(4.14) 
Ck-(m/~) 

b+'C(h; k,X) =(1 - ~(c)2c -2k+') a(~) 

× H {(1-x2(q)q2k-m-2)/(1-'x(q)2q-2k+m)} b+(h;k'X) 
qes\s(x) 

Cxk-(m/2) 
=(1 - ~(c)2c -2k+m) G(X) 

x 17[ {(1 - -  x2(q)q2k-m-2)/(1 - -  -~(q)2q-2k+m)} 
q6s\s(x) 

× 2 - " "  det (h)k-•L+(k - (m/2), ~w)M(h, ~, k), 

which are the Fourier coefficients of the right-hand side of (4.7). Taking into 

account (4.12) and (4.13) we transform (4.14) to the following: 

~k-(,~/2) ,r ,  , 1-I ((1 + X~Z(q)qk-('~/2)-')/(1 + ~w(q)q -k+(m/2)) } 
tJw X I L ' w )  q E S \ S ( x  ) 

Now using (4.13) we see that  the value of w(C~-) depends only on det h mod 4Mo 
and we can finish the proof of Theorem 4.3 by subdividing the right-hand side 

of (4.7) into a finite number of subseries according to det h mod 4M0 and by 

constructing the S-adie measure of Theorem 4.3 for each of these series term by 

term as above. Notice that the finite Euler product M(h, ~, k) is a finite linear 

combination of terms of the type ~(b)b -k = (x(b)bk) -1 (with (b, p) = 1) in which 

coefficients are algebraic integers independent, of X. Then each of the Fourier 

coefficients of these series as a function of (k, X) has the 'form of the following 

linear combination: 

(4.16) 
F_. fz;  x x;"/2 aF - = 

with uniformly p-adically bounded algebraic coefficients A~ E ip(Qab). It remains 

to notice that  xp(y)-'~/2d#+(c, w)(y) is a bounded p-adic measure on Z~. If we 
kj 

consider the system of functions {fj}jeJ,  fj = XjXp on Z~, then integration 
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along this measure shows that the abstract Kummer congruences 3.3 for this 

system of functions are obviously satisfied by the expressions in (4.16) term by 

term over i, completing the proof. 

5. Application: On the A-adic Klingen-Eisenstein series 

This section was written in cooperation with Koji Kitagawa (Hokkaido Univer- 

sity, Japan). 

5.0. The purpose of this section is to construct a p-adic measure coming from 

the Klingen-Eisenstein series on the symplectic group 

G -- GSp2.~ = {a e GL2m J taJma = u(a)Jm, u(oL) e GL1} 

over Q where 

Jm = lm 0m " 

This measure takes values in a space of p-adic Siegel modular forms and defines a 

£-adic Siegel modular form where 12 denotes the field of fractions of the Iwasawa 

algebra A = Zp[[X]]. 

More precisely, let f E S~ (F) be a cusp form of degree r (with respect to a 

congruence subgroup F of F r of level C). If k > m + r + 1 and m _> r then the 

Klingen-Eisenstein series is defined as the following absolutely convergent series: 

(5.1) E'~'"(z, f, X) = E x(det (d.~))f(w(r)(Tz))j(7, z) -k, 

with z C Y9 "~, w(z) (~) being the upper left corner of z of size r × r, 

( a ~  b~)  
3' = c.~ d.y 

and Amx denotes the set of elements in F m having the form 

(0" *) m - - r , m + r  $ 

[K1]. This series turns out to be a modular form of weight k and of degree m on 

a congruence subgroup of the group Fm. M. Harris proved in [Har2], [Har3] the 

validity of GarretUs conjecture: all the Fourier coefficients of the modular form 

E~'r(z, f, X) belong to the field Q(f ,  x) generated by the Fourier coefficients of 

f and X (at least for trivial X). Explicit formulas for Fourier coefficients of the 
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series Ek'r(z ,  f )  were given by Bbcherer [B52] in general for k > m + r + 1 and by 

Kurokawa and Mizumoto [Kur-Miz], [Mizl], [Miz2] who treated the case m = 2, 

r = 1. It turned out that the most significant term in these formulas involves the 

special values of the standard zeta function of f twisted with a certain quadratic 

Dirichlet character attached to the matrix index ~ of a Fourier coefficient; as noted 

above, these functions reduce to the (twisted) symmetric squares of the form f 

if m = 2, r = 1. The p-adic construction uses the identity of Bbcherer [Bbl] 

generalised by Shimura [Sh95] which expresses these series as certain integrals 

involving the Petersson product of f (w)  with the pullbacks E(diag[z, w]; k, X, N) 

of the Siegel-Eisenstein series (see [Ga]) 

(5.2) E(Z,  k, X, N) = ~ x(det (d~)) det (c~Z + dc~) -k, 
~ E P n F \ F  

where Z is a variable in the Siegel upper half plane of degree n = m + r, 

.9,~ = { Z  E M(C), tZ = Z = X + Y > 0 } ,  

r = r ~ ( N ) ,  ~ =  
ca d~ ' 

and P denotes the subgroup of P c G~+,  consisting of elements a with the 

condition c~ = 0, and k is the weight (the above series converges absolutely for 

k > n + 1). The series (5.2) may be regarded as a series of the type (5.1): they 

coinside with ~m+*'°(7~ ~k ~ ,  f ,  X) with a constant 1 as f .  

Let D(s, f ,  X) be the standard zeta function of f e $~¢(F) as above (with local 

factors of degree 2r + 1, see JAn-K]) and X be a Dirichlet character. Then the 

essential fact for our construction is the following identity: 

(5.3) A(k, x)D(2k - r, f ,  "~'~ ~)E k ( z , f , x )  = (if(w), "~+~° • E k ' (dlag[z,w])). 

Here A(k,x)  is a product of special values of Dirichlet L-functions and 

F-functions, ~ is a certain Dirichlet character, ~m+r,0 a series of type (5.2) trans- ~ k  
formed by a suitable element of G m+~, f f  an easy transform of f ,  (z, w) C Dm×-e)r 

(see [Sh95, (7.4), p. 572]). Our construction is based on the fact that the se- 

ries (5.2) produces a p-adic measure (the Siegel-Eisenstein measure). In the 

simplest situation this measure depends on the variables (x, ~) which belong to 

Z~ × An,p, where Zp is the p-adic unit group, and An,p is a free Zp-module 

of rank n(n + 1)/2 formed by half integral symmetric matrices of size n over 

Zp. The Siegel-Eisenstein measure defines a A-adic modular form whose special 

values are (involuted) Siegel-Eisenstein series described in Section 3. 
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5.1. MODULAR FORMS, INVOLUTION AND q-EXPANSION. We put G n 
Sp2n(Q) and G m'r = Sp2m(q) x Sp2r(Q). We define the congruence subgroup 

F~(p a) in the usual way and put F~' r (p  a) = F~(p ~) x F~(p~). Let Bn be the 

semigroup of symmetric, semi-definite, half-integral matrices of size n. We put 

Bm,r = B m  X Br. 
Let G be one of the groups G n (n = 1,2,3) or G 2'1. Let F0(p a) be the 

one of F~(p") (n = 1,2,3) or F~'l(p a) according to G. Let B be the one of 

Bn (n = 1, 2, 3) or B2,1 according to G; 

/k2,1~T~2,1~ o\ 
~ , to  ~,p ), ¢) = 

{f  E M2 ' l (F l (p" ) )S t  fiR(g2, gl) = ¢(det  (d2). dl ) f  for any (g2, gl) E F2'l(p~)}. 

5.2. A-ADIC MODULAR FORMS. Let X = wa with some a (0 _< a < p -  1), 

w: Z~ -+ #p-1 the Teichmfiller character. Let G be one of the groups G n (n = 

1,2,3) or G 2,1. Let P0(P") be the one of the groups F~(p") (n = 1,2,3) or 

F02'l(p •) according to G. Let B be the one of Bn (n = 1, 2, 3) or B2,1 according 

to G. Let P be a Zariski dense subset of Spec A(Qp). We call an element F 

of A[[qe]] a A-adic modular form on G with character X with respect to P if 

F(e(u)u k - 1) gives a q-expansion of modular forms in Mk(Fo(pa), eXw -k) for all 

(k, ~) such that  Pk,, E 7 ). We shall take 79 = 7)(5) = {Pk,¢; k >_ 5}. We denote 

by M(G, X; A) the A-submodule of A[[qB]] generated by A-adic modular forms 

on e .  

We use the symbol Mn(x;A)  (n = 1,2,3) or M2'I(x;A ) for M(G,x ;A)  ac- 

cording to the group G. Then obviously 

A[[q B~'~ ]] = A[[q B~ ]]~ A A[[q B1 ]]. 

We let the Hecke operator TI(p) act on M2,1(F2o'l(p~), ¢; O). We put el = 

lim,~-.oo TI(p) '~!. We put 

M2'~-°~d(r2o'l(p~), ¢; O) = e~M~'~(r2o'~(p~), ¢; O). 

We call f E M2,1(A,x) 1-ordinary if its specialization at Pk,, is in 

M2,1-°~a(r2o'~(p~),¢;O) for any Pk,, E 7 9. We denote by M2'I-°~d(A,x) the 

space of 1-0rdinary A-adic modular forms, and M°rd(A, X) the space of ordinary 

A-adic modular forms in the sense of Hida. 

PROPOSITION: M2'l-°rd(x; A) = M2(X; A) @h M°rd(x; A) 

Proo~ Let f f  E M°~d(x;A) (i = 1 , 2 , . . . , n )  be a basis. Define A-adic linear 

forms 

li: M°~d(x; A) -+ A (i = 1, 2 . . . .  , n) such that l i( f  j) = 5i,j. 
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2,1-ord a --k Let P = Pk,e E Pc, G E M2' l - °rd(x;  A), Gp E M~ (Fo(p),)Cew ;O).  We 

have that  

M2, T M  Fo(p~ , = k ( ) XE~-k; (9) 
o,d , M~(r0(p~), XeW-k; (.9), Mk ( ro (p ) ,  xcw-k; (9) ®o 

• v - ~ n  ,' i  ® i and there exist g]o such that  Gp = 2..,i=1 ]i~ gp. Put  

R~ = lip @ id: Gp ~-+ (l~ ® id)( ~ fJp @ gJp) = 1 ® g~ = gip. 
j=l 

This gives an (9-module homomorphism 

R~p = l~p ® id: M2'l-°'d'rk ~ 0~P' ~'), XeW -k ; (9") --~ M~ (ro(p~), xe~-k; (9). 

We want now to construct a A-adic lift of R~ or of g]o. We apply the following 

patching lemma to q-expansions of A-adic forms, coefficient by coefficient: 

LEMMA: Suppose that for each P E 7) we are given a gp E A / P A  such that they 

aH are compatible (i.e. gp and gQ map to the same gp+Q E A / ( P  + Q)A). Then 

there exist g E A such that 

VP E 7 ) gp ---- g mod P E A / P A  

(see [Wi], [Hi4], p. 232). 

Remark: In the definition of A-adic forms in 5.2 we assume that  the level is just 

a p-power. This assumption is needed in order to guarantee the semi-simplicity 

of the Hecke algebra h°rd(x , •). However, it was pointed out by the referee that  

the semi-simplicity for a square-free-level Hecke algebra seems to be known now 

by the work of Coleman-Edixhoven [Co-Ed] so that  our construction could also 

be extended to the square-free-level case. This observation is important  also if 

we wish to keep the condition "2 E S" in Theorem 4.4 (except probably that  the 

Euler 2-factor should then be removed from the L-value). 

5.3. THE SIEGEL-EISENSTEIN A-ADIC MODULAR FORM. The construction of 

this form uses normalized Siegel-Eisenstein series. We recall first the definition 

of the normalized Siegel-Eisenstein series in order to give a precise statement on 

algebraic properties of these Fourier coefficients. Let X be a Dirichlet character 
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modN > 1 such that X(-1)  = (-1)~; 

(5.4) 

C~ (z) =C* (z, k, X, N) 

=N'~k/aink2-n(k+l)lr-nkF(ln, 0) -1 

In/2] 
x L*N(k,x ) H L*N(2k - 2i 'x2)E(-(Nz)-I) det (v/-Nz) -k 

[,#2] 
=Nnk/2F(k, O)Lg(k, X) H LN(2k - 2i, x2)E * (Nz), 

i----1 

with 

(5.5) 

E*(Nz) =E(-(Nz)  -1) det (Nz) -k : N-kn/2EIW(N), 
[,#2] 

F(k, 0) =i 'k2-n(k+~)~r- 'kr (1 , ,  0 ) -~r ( (k  + 5)/2) H r (k  - j )  
j = l  

{ r.(k)r(k - 1 ~n + p)/2),  if n is even; 
- - - - ink2-n(k+l)Tr-nk  X 

F~(k), if n is odd. 

In this article we are interested only in the case when n is odd. Then one has 

(5.6) 
C+~ (z) =C;  (z) = C*~(z) 

[n/21 
=i"k2-'~(k+l)r-nkF,~(k)Lg(k, X) l-[ Ly(2k - 2i, x2)EIW(N) 

i=1 

where 

(5.7) 
n--1 

F, (s )  = r "('*-U/4 H F(s - ( j /2)) .  
j=O 

Here ( 1 . )  W(N) = 0,~ 
N I ,~ On 

denotes the principal involution of level N, and the gamma factor F(1,~, s) is 

defined in Proposition 1.4. 

We now pass to a p-adic construction. Let An,p -- AN ® Z v be a free Z v- 

module of rank n(n + 1)/2 of half integral symmetric matrices of size n over Zp. 

We construct certain p-adic measures on the compact group Y ---- An,p X Z ~ ,  with 

values in the completed semi-group ring R = Op[[qB"]] ® Q of the multiplicative 
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semi-group qB., where B,~ is the additive group of positive semi-definite, half- 

integral matrices ~ -- (~ij) ~_ O, 2~i j E Z, ~ii E Z, (_Op being the ring of integers 

of the Tate field Cp. This measure will be characterized by its integrals on the 

discrete subset Zp C Y formed by elements of the type ((k, X), ¢) for sufficiently 

large k E Z, Dirichlet characters X on Z~, and additive characters ¢ of An,p. We 

use the following simple observation: if for a fixed element 

G(q) = ~ g(~)q~ E Op[[qBn]] ® Q 

and for an open compact subset U C An,p we put 

(5.8) G(q;U) = ~ g(~)q~ E (.9p[[qBn]] ® Q, 
~EBnnU 

then we obtain a measure pa on An,p defined by #G(U) = G(q; U). Now we 

observe that  the coefficients of the normalised Eisenstein series can be represented 

as certain p-adic integrals. 

Consider again the normalized Eisentein series G + (z) = G + (z, k, X, N). Under 

the above assumption on k these series are holomorphic Siegel modular forms 

with cyclotomic Fourier coefficients: 

G+(z,k,x,N) = ~ b+(~,k,x)en(~z), 
A ~ > 0  

with 

(5.9) 
2 -n~ det (~)k-'~L~(k - (n/2), Xw¢)M(~, X, k) for n even, 

b+(~ 'k 'x )  = 2 - ' ~  det (~)k-~M(~, x, k) for n odd. 

Here n = ( n +  1)/2, and L + ( k -  (n/2), Xw~) is the value of a normalised Dirichlet 

L-function, and the integral factor 

(5.10) M(~,X, k) = 1-I Mq(~,x(q)q -k) 
qCP(~) 

is a finite Euler product, extended over primes q in the set P(~) of prime divisors 

of the number N and of all elementary divisors of the matrix ~. The important 

property of the product is that for each q we have that Mq(~,t) E Z[t] is a 

polynomial with integral coefficients. Its explicit form is not important for our 

construction. 
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For the ~adic  constuction we put M = Np and 

(5.11) + Gp(z,k,x,M) = ~ b+(~,k,X)e,(~z). 
An~>O 

(det ~,hl)=l 

Recall that according to Theorem 4.4 we have that for n odd there exists a 

measure #E-S  on Y ---- {(( ,x)  E An,p × Zp} with values in R = Op[[qB"]] ® Q 

which is uniquely defined by the following properties: for all pairs (k, X) with 

k E Z sufficiently large, 2k > n, and a Dirichlet character X : Z~ --+ C~,  

X mod M with M divisible by p, one has 

(5.12) /ydet(5)k-~x~-("/2)X(X)~E-S(~,x) = G + ( z , k , x - 1 , M )  e R. 

Proof  of the theorem is given in 4.5 and uses arguments analogous to those in 

[Pa4], pp. 115 116. Notice that the Fourier coefficients of the right-hand side 

of (5.12) contain the finite Euler product M(~,X, k) = l-lqep(~)Mq(~,x(q)q-k), 
and it has the form of a finite linear combination of terms of the type ~(b)b -k = 

(x(b)bk) -1 with (b,p) = 1 whose coefficients are integers independent of X and 

k. So one obviously constructs #E-S  term by term. 

The explicit formulas for the Fourier coefficients show that this measure takes 

values in Zp[[qB"]] and its restriction to Z~ --% A × F, F = (u} defines an element 

EA(X) e M3(x;A) which is a power series in A[[qB"]] and which is called the 

Siegel-Eisenstein A-adic modular form whose special values X = e(u)u k - 1 are 

given in terms of (5.12). More precisely, we normalize this A-adic form by the 

condition 

EA(X)(e(u)u k -- 1) = G+(z, k, X - l e - l w  k, M)  (M = p'~). 

5.4. THE PULLBACK OF A-ADIC MODULAR FORMS. Let 7r: B 3 -4 B2 x B1 be a 

map given by 

a n  a12 a13~ ( (  a12~ ) 
a21 a22 a23 / ~ a l l  
a31 a32 a33/  a21 a22/  'a33 

We note that  for each ((2,~1) E B2,1 the fiber 7r-1((2,(1) is a finite set. For 

f = ~_,a(~3, F)q ~a e A[[qB3]] we define, ~ (F)  e A[[qB2.']], 

a(~2, ~1, O(F)) = E a(~3, F); 
~3 e,~-l(~2,~l) 

is a A-module homomorphism. 
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PROPOSITION: (I)3 maps M3(x;A) into M2'I(x;A). 2,1 

Let EA(X) E M3(X; A) be the (involuted) A-adic Siegel-Eisenstein series of 

degree 3 with character X constructed in 4.5. Then (I)3,1(EA(X)) e M2'I(X; A). 

5.5. A-ADIC PETERSON INNER PRODUCT. We follow here Hida's idea of alge- 
braic Peterson inner product ([Hi4, p. 222]). Let s°rd(x; A) denote the space of 
A-adic cusp forms with character X. Let h°rd(x; A) be the p-adic Hecke algebra 

with character X. We note that S°~d(x; A) and h°rd(x; A) are the A-dual of each 

other by the pairing 

(f, h) = a(1, flh). 

We put 
D = h°rd(x; £)  ---: h°rd(x; A) •h ~. 

Since D is semi-simple there is a non-degenerate pairing (~, .) on D given by 

(h, g) = Tro/£(hg). 

By duality we have the dual paring (., .) on s°~d(x; £). If F E S°rd(X; A) is the 

normalized eigenform, then 

c(F, G) (F, G) - ' ~ E £  
(F,F) 

is well-defined. We write M(x;A)  = MI(x;A) .  Let M°"d(x;A) denote the 
ordinary part and let ~rord denote the projection to the ordinary part. The Hecke 
algebra H°rd(x; A) acts on M°rd(x; A); H°rd(x; ~) = H°rd(x; A) (~A ~ is a direct 

sum of h°rd(x; ~.) and the Hecke algebra over 1: corresponding to Eisenstein 
series. Let lc~sp denote the idempotent corresponding to h°rd(x; ~.). We define 
a A-bilinear map (., .): S°rd(x;A) × M(x;A ) --+ £ by 

(F, G) = (F, lc,~p. ~ro,.a(G)). 

5.6. A-ADIC KERNEL FUNCTION. Let G C M2'I(x;A). We write 

G = E gJ ® hj 
jcJ 

with gj C M2(x;A) and hj E MI(X;A). We define a A-linear map R(G): 
S°"d(x; A) -4 M2(X; A) ® £ by 

(5.13) R(G) : E g j ( . ,  hi). 
jEJ 

In the definition (5.13) we used the A-bilinear map (., .): S°~d(x; A) × M(X; A) 

£ of the previous section. 
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5.7. THE A-ADIC BOCHERER-SHIMURA FORMULA. We may call 

1 
EA(F, X) - (F, F----~ R(~(EA(X))(F)  e M2(X; A) ®A £ 

the A-adic Klingen-Eisenstein series for a A-adic cusp form F E s°rd(x; A). 

Now our task is to investigate a precise relation of 

(5.14) R(cb (Eh (X))(F) 
(F,F) 

with the classical Klingen-Eisenstein series. We give here only an expected 

formula: 

Let m = 2, r = 1. For all P = Pk,~ C 7 ) we have that the specialization of (5.14) 

at P is given by 

Ap(k, w-kx¢) D(2k - r, fk,~) ,~,~ 
-~k ,-~, f-~,~ ) E k ( z ' f k 'e ' X ) = 

(5.15) 
t W m + r , O  • - k  

Ap(k,w_kxe) (f~,~( ) , E  k (dlag[z,w],w Xe)) 
(fk,e, fk,~) 

where Ap( k, w-kX e) is an explicitly given elementary factor. 

Proof of (5.15) (in case m = 2, r = 1) is based on the identity (5.3), the definition 

of EA(X), of the kernel function 

R(G): s°rd(x; A) -~ M2(X; A) @ E 

of 5.6. 
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